Design Circular Queue

 

 문제 설명

 

Design your implementation of the circular queue. The circular queue is a linear data structure in which the operations are performed based on FIFO (First In First Out) principle and the last position is connected back to the first position to make a circle. It is also called "Ring Buffer".

One of the benefits of the circular queue is that we can make use of the spaces in front of the queue. In a normal queue, once the queue becomes full, we cannot insert the next element even if there is a space in front of the queue. But using the circular queue, we can use the space to store new values.

Implementation the MyCircularQueue class:

  • MyCircularQueue(k) Initializes the object with the size of the queue to be k.
  • int Front() Gets the front item from the queue. If the queue is empty, return -1.
  • int Rear() Gets the last item from the queue. If the queue is empty, return -1.
  • boolean enQueue(int value) Inserts an element into the circular queue. Return true if the operation is successful.
  • boolean deQueue() Deletes an element from the circular queue. Return true if the operation is successful.
  • boolean isEmpty() Checks whether the circular queue is empty or not.
  • boolean isFull() Checks whether the circular queue is full or not.

You must solve the problem without using the built-in queue data structure in your programming language. 

 

 제한 사항

 

  • 1 <= k <= 1000
  • 0 <= value <= 1000
  • At most 3000 calls will be made to enQueue, deQueue, Front, Rear, isEmpty, and isFull.

 

 입출력 예

 

Example 1:

Input
["MyCircularQueue", "enQueue", "enQueue", "enQueue", "enQueue", "Rear", "isFull", "deQueue", "enQueue", "Rear"]
[[3], [1], [2], [3], [4], [], [], [], [4], []]
Output
[null, true, true, true, false, 3, true, true, true, 4]
Explanation
MyCircularQueue myCircularQueue = new MyCircularQueue(3);
myCircularQueue.enQueue(1); // return True
myCircularQueue.enQueue(2); // return True
myCircularQueue.enQueue(3); // return True
myCircularQueue.enQueue(4); // return False
myCircularQueue.Rear(); // return 3
myCircularQueue.isFull(); // return True
myCircularQueue.deQueue(); // return True
myCircularQueue.enQueue(4); // return True
myCircularQueue.Rear(); // return 4

 

 Python 코드

 

Python code 

class MyCirculurQueue:
def __init__(self, k):
self.q = [None] * k
self.maxlen = k
self.p1 = 0
self.p2 = 0
# enQueue(): rear 포인터 이동
def enQueue(self, value):
if self.q[self.p2] is None:
self.q[self.p2] = value
self.p2 = (self.p2 + 1) % self.maxlen
return True
else:
return False
# deQueue(): front 포인터 이동
def deQueue(self):
if self.q[self.p1] is None:
return False
else:
self.q[self.p1] = None
self.p1 = (self.p1 + 1) % self.maxlen
return True
def Front(self):
return -1 if self.q[self.p1] is None else self.q[self.p1]
def Rear(self):
return -1 if self.q[self.p2 - 1] is None else self.q[self.p2 - 1]
def isEmpty(self):
return self.p1 == self.p2 and self.q[self.p1] is None
def isFull(self):
return self.p1 == self.p2 and self.q[self.p1] is not None

* 참고 링크 : https://deep-learning-study.tistory.com/480

 

 C++ 코드

 

C ++ code

class MyCircularQueue {
public:
MyCircularQueue(int k): q_(k) {}
bool enQueue(int value) {
if (isFull()) return false;
q_[(head_ + size_) % q_.size()] = value;
++size_;
return true;
}
bool deQueue() {
if (isEmpty()) return false;
head_ = (head_ + 1) % q_.size();
--size_;
return true;
}
int Front() { return isEmpty() ? -1 : q_[head_]; }
int Rear() { return isEmpty() ? -1 : q_[(head_ + size_ - 1) % q_.size()]; }
bool isEmpty() { return size_ == 0; }
bool isFull() { return size_ == q_.size(); }
private:
vector<int> q_;
int head_ = 0;
int size_ = 0;
};

* 참고 링크 : https://zxi.mytechroad.com/blog/desgin/leetcode-622-design-circular-queue/

 

 출처

 

https://leetcode.com/problems/design-circular-queue/

+ Recent posts